Spatial and Temporal Distribution of Benthic Oligochaeta In Euphrates River, Middle of Iraq

Haifa J. Jaweir 1, Jasim M. Salman2*, Zahraa H. Abaid 3

1 Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq.
2* Department of Biology, College of Science, University of Babylon, Hilla, Iraq.
3 Ministry of Science & Technology, Baghdad, Iraq.

*Email: jasimsalman67@yahoo.com

Abstract

The present study discusses spatial and temporal distribution of aquatic oligochaetes community as sorted from macrobenthic fauna collected during River Euphrates in Iraq. Extending from Al-Musayab district (S1), Saddat Al-Hindiah district (S2) to Al-Hindiah district (S3).

Twelve species of oligochaetes (9 genera; 3 families) were determined during study period. Highest individual number were recorded in S3 (9954.56 ind./m²) during Jan. 2014 and the lowest number were recorded in S3 (222.2 ind./m²) during Oct. 2013. The highest average monthly density was recorded during Dec. 2013 and Jan 2014, while the highest site average density was recorded in S3.

Tubificid worms made up the majority component of aquatic oligochaeta in investigated area of the river specially Limnodrilus spp. which include four species Limnodrilus hoffmeisteri (Claparede 1862), L. claparedeiens (Ratzal 1869), L. profundicola (Verrill, 1871) L. udekemianus (Claparede 1862). Stylaria lacustris was the most abundant Naidid worms.

This study recorded two species as new records on Euphrates river {Spirosperma ferox (Eisen, 1879), Pristina jenkiniae (Stephenson, 1931)} and one species as new record on Iraqi fauna{ Bothrioneurun pyrrhum (Marcur, 1842)}.

Keywords: Aquatic Oligochaeta; Tubificid worms, Naidid worms; Naidinae, Pristininae, diversity, River Euphrates.

Introduction

Oligochaetes are the most divergent and abundant group of benthic invertebrates in freshwater system [1]. They are (especially the tubificid worms) important as primary consumers, primary decomposers, modifiers of the substrate, and as food for predators [2].

The distribution and abundance of oligochaetas in fresh waters depend upon many environmental factors, such as the nature of the substrate, temperature, flow rate, oxygen concentration and availability of nutrients, moss or algae cover, and changes in nitrogen, carbon, and humus contents in the bottom sediments [3,4]. Several authors considered oligochaetes as a good indicators of environmental variations.
because of easy sampling and identification, relatively long life; limited migration and have different sensitivities to polluted water [5, 6].

Oligochaetes are hermaphrodite and reproduce by cross-fertilization, while a few species of them may reproduce asexually by architomy or paratomy [7]. Their identification to species level depends on some external morphological features, among these; the color of the body, number of segment, size, shape and number of chaetae, or on the anatomy of digestive and reproduction systems as well as some features concerning their movement pattern and habitat nature [8].

Several authors in Iraq were studied the oligochaetes in many Iraqi aquatic systems [9, 10, 11, 12, 13, 14] and [15] in addition to some studies which referred to oligochaetes as a group within the macrobenthic community samples [16, 17, 18].

The objective of the present work is to determine the spatial and temporal distribution of aquatic oligochaetes species in Euphrates river in middle of Iraq.

Materials and Methods

Samples were collected monthly from three sites on River Euphrates in the middle region of Iraq including, (S1) at Al-Musayab district; (S2) at Saddat Al-Hindiaa city and (S3) at Al-Hindiaa city (fig.1). Ekman dredge (15X15cm) has been used to collect surface bottom sediments samples during the study period from October 2013 to June 2014. Three random replicates, were washed with water through 0.2 µm mesh size sieves in the field and then brought to the laboratory. In the large worms, like Tubificid worms were easily sorted with the aid of a magnifier using a white try for spreading sediment during sorting. For sorting smaller meiobenthos worms, like Naidid worms, small amount of sediments were transferred to a clean Petri dish containing little amount of tap water, and the worms sorted carefully using dissecting microscope. Sorted worms were place in a watch class containing little amount of clean tap water, few drops of 4% formalin was then added drop by drop to the dish to kill the worms. The worms were then preserved in 75% ethanol. For the purpose of identification, the preserved worms were transferred to 30% alcohol, left for few minute before they transferred to distilled water. A temporary slides were prepared by adding a drop of polyvinyl lactophenol on a microscopic slide and then immersed the worms. The cover slip was added and gently pressed. The slides were left for few days before examined under a compound microscope. Species identification was conducted using appropriate keys [19,7].

Fig. 1. Map of the study area in the mid sector of River Euphrates, Iraq
Results and Discussion

Table 1 shows the total densities of aquatic oligochaetes during the study period, it was noted that they were present at all sites and in all months. The highest monthly average density of 7066.04 and 7465.90 ind/m² were recorded during Dec. 2013 and Jan. 2014 respectively, while the highest average site density of 4809.418 was recorded in S3. The lowest monthly average density of 503.65 ind/m² were recorded during Oct 2014, and lowest site average density of 2676.28 ind/m² were recorded in S2. Fig(1) shows that Tubificid worms comprised 91% of total numbers of oligochaetes, in which Eiseniella tetra Hedral and Naidid worms comprised only 6 & 3% respectively.

A total of 2436 individuals were sorted during the study period. Eleven species were belonging to the family Naididae, three of them identified as Naidid worms (2 species Naidinae + 1 species Pristininae); 8 species of Tubificid worms, in addition to one species of family Lumbricidae. It is clear from this table that Limnodrilus hoffmeisteri was the most abundant species with 49.55% of the total oligochaetes individuals identified. Followed by, L. profundicola and Branchiure sowerbyi, which they recorded a percentage of 19.34% and 18.08% respectively, while other species recorded percentages ranged from 4.66-1.30%. Highest species richness was recorded in S1, S3 (10 species each), while at S2 the number of species did not exceed 7.

Fig (2) shows that naidid worms were represented by Stylaria lacustris (78%) Pristinella jenkinae (16%) and Slavina appendiculata (6%). Among Tubificid worms, Fig (3) shows that, L. hoffmeisteri had a higher percentage of 55%, followed by, L. Profundicola and B. sowerbyi (21%) each. Other species includes L. udekinianus, L. claparedieanus, Tubifex tubifex, Spiroserma ferox, and Bothriocurum pyrrhun. All of them form 3% of total Tubificid.

The occurrence, abundance, diversity, and density of aquatic Oligochaetes were highly affected by variation of environmental features such as heavy metals pollution [20]; prevalence of gravelly sediment [21]; low availability of organic matter [22] and competition and predation [23] and [4].

The high density of Tubificidae in study sites may be indicated to the entrance of organic matter into the aquatic system [4]. The abundance of oligochaetes may be due to several reasons such as high organic content and dissolved oxygen concentrations [24]. Some authors such as [25] and [26] used the counts of oligochaete to classify of water pollution levels: 100 to 999 individuals (light pollution); 1000-5000 individuals (moderate pollution) and exceeding 5000 individuals (heavy pollution). From this point of view, the state of pollution in the River Euphrates is considered as moderately polluted to heavy pollution as about 10000 ind/m² was recorded in S3, due to decrease in degradation rates in cold temperature during Dec. 2013 and Jan. 2014.

The results showed by Fig(1) indicates that the ratio of Naididae to Tubificidae was too low. This ratio was used by some authors as bioindicator of water quality in respect to environmental factors [27]. Fig (2) indicates that S. lacustris was the most abundant species among Naidid worms, while among tubificid worms (Fig3) L. hoffmeisteri, was the most abundant followed by L. profundicola and S. sowerbyi. In general L. hoffmeisteri and B. sowerbyi are the most abundant tubificid in Iraqi water surfaces, while T. tubifex always recorded in a low percentages [12,13,15].

According to [28], the current study recorded the species Spiroserma ferox (Eisen,1879) and Pristinella jenkinae (Stephenson, 1931) as a new records to River Euphrates and the species Bothriocurum pyrrhun (Maruc,1842) as a new record species to Iraq fauna.

Table 1: Total Numbers of aquatic Oligochaetes (individual /m²) in study sites of Mid Sector of River Euphrates /Iraq for a period (Oct.2013- June.2014.)
Table (2): Numbers of Aquatic Oligochaetes species Identified in study sites of Mid Sector of River Euphrates / Iraq

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Sites</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>Total</th>
<th>Percentages %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naididae</td>
<td>Sylvania lacustris</td>
<td></td>
<td>21</td>
<td>14</td>
<td>14</td>
<td>49</td>
<td>20.1</td>
</tr>
<tr>
<td>Naidid worms</td>
<td>Sylvana appendiculat</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>Naididae</td>
<td>Pristinae fenkitinae **</td>
<td></td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>0.42</td>
</tr>
<tr>
<td>Naidid worms</td>
<td>Pristinae fenkitinae **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naididae</td>
<td>Branchiura sowerbyi</td>
<td></td>
<td>173</td>
<td>115</td>
<td>177</td>
<td>465</td>
<td>19.08</td>
</tr>
<tr>
<td>Naididae</td>
<td>Bothriocellum pyrhum*</td>
<td>7</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>0.28</td>
</tr>
<tr>
<td>Naididae</td>
<td>Limnodrilus hoffmeister</td>
<td>419</td>
<td>383</td>
<td>508</td>
<td>1207</td>
<td>49.55</td>
<td></td>
</tr>
<tr>
<td>Tubificid worms</td>
<td>L. profundicola</td>
<td>171</td>
<td>101</td>
<td>198</td>
<td>471</td>
<td>19.34</td>
<td></td>
</tr>
<tr>
<td>Tubificid worms</td>
<td>L. udekemianus</td>
<td>9</td>
<td>-</td>
<td>6</td>
<td>15</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Tubificid worms</td>
<td>L. clapeoletianus</td>
<td>24</td>
<td>3</td>
<td>12</td>
<td>39</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Tubificid worms</td>
<td>Spiroperma ferox***</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Lumbricidae</td>
<td>Tubifex tubifex</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Lumbricidae</td>
<td>Eisenia fetida</td>
<td>65</td>
<td>22</td>
<td>72</td>
<td>138</td>
<td>6.48</td>
<td></td>
</tr>
</tbody>
</table>

Total species: 902, 542, 992, 2436

* New record for Iraq
** New record for Euphrates River

Fig (2): Naidid worms

Fig (3): Tubificid worms
References

